On this page the parts of the lectures are organized by topic. If you want to follow the full lectures, lecture by lecture go to the education category.
The Assignment
- L1: Assignment // Aim of the course
- L4: Assignment // General advice
- L1: Assignment // General explanation
- L7: Assignment // Minimal requirements final report
- L6: Assignment // Minimum requirements Final Report
- L6: Assignment // Report: necessary details
- L1: Assignment // Which: constraints, FEM loads, Individual loads, number of calculations, checks
- L1: Assignment // Yield, local buckling, global buckling, fatigue, number of moves of crane, stability, crane standard NEN2018 / NEN2019
Crane design
- L3: Design // Change the shape of each element of the crane / Why are the top and bottom thicker plates than the side plates?
- L1: Design // Different types of cranes, Q: why rail distance is the same
- L3: Design // Dimensions of a crane – weights
- L4: Design // Dimensions of the crane
- L1: Design // Dimensions, Q: Why do containers stay the same in width, cornerloads, operational speeds, Q: why use m/min instead of m/s
- L3: Design // Own weight of crane
- L4: Design // Plate thickness – thickness of beams
- L2: Design // Trolley passing construction
- L4: Design // Weight info (engine room, structural parts, wind)
FEM basics
- L2: FEM Basics // Beam release
- L6: FEM Basics // Calculation Methods (Static, Eigenfrequencies, Harmonic, Power spectral density, Buckling, Transient)
- L2: FEM Basics // Connecting boom to forestay (Skip for assignment)
- L2: FEM Basics // Connection of beams with Offsets
- L2: FEM Basics // Constraints Bogie sets
- L3: FEM Basics // Constraints: Bogie Sets
- L2: FEM Basics // Element stress vs Nodal stress
- L6: FEM Basics // FEM results vs. real stresses
- L6: FEM Basics // Global Buckling
- L6: FEM Basics // Harmonic
- L2: FEM Basics // Joints and hinge points
- L2: FEM Basics // Mass distribution How to add the engine room
- L1: FEM Basics // Mathematics behind FEM, Why called FEM, nice pictures, LEGO (elements),
- L2: FEM Basics // Mesh Size and type
- L6: FEM Basics // Metal non-linearities
- L2: FEM Basics // Modeling details: Stiffeners, Mass distribution, Hinge points and plate hinges, Stiff connections and constraints
- L2: FEM Basics // Modeling: Beam simplification: No stiffeners included
- L6: FEM Basics // Non-linearities
- L1: FEM Basics // Q: What is Finite Element Method, Assumptions made
- L2: FEM Basics // Real hinge points
- L6: FEM Basics // Stress stiffening and spin softening
- L2: FEM Basics // Warping and torsion
FEM theory
- L6: Theory – Xiaoli // Buckling – Structural Instability
- L6: Theory – Xiaoli // Buckling of stiffned plates – important parameters
- L6: Theory – Xiaoli // Buckling stress vs. Slenderness Ratio
- L6: Theory – Xiaoli // Euler Buckling
- L6: Theory – Xiaoli // Euler Buckling – Geometric effect
- L6: Theory – Xiaoli // Euler Buckling – with imperfections
- L6: Theory – Xiaoli // Johnson Equation for Buckling
- L6: Theory – Xiaoli // Solving Buckling Problems
Explanation of topics from the Crane standard NEN2018/2019
- L5: Standards // Allowable Yield Stress
- L5: Standards // Buckling length
- L3: Standards // Classification
- L5: Standards // Create Cripple Check: Steps
- L5: Standards // Create Static Stress Check: Steps
- L5: Standards // Cripple Check (Beam Buckling)
- L1: Standards // Example of standard (loads to be applied to crane)
- L5: Standards // Fatigue check
- L5: Standards // Fatigue check: Steps
- L4: Standards // Hoisting factor
- L3: Standards // M-factor
- L4: Standards // M-factor
- L6: Standards // Slenderness influence on safety factor
- L5: Standards // Static Stress check
- L3: Standards // Use of standard
- L5: Standards // Weld classification
The different Loads on the crane (and how to apply them)
- L4: Loads // Buffer actions
- L3: Loads // Buffer load
- L4: Loads // Buffer load trolley
- L7: Loads // Crane ride
- L7: Loads // Description of Individual loads
- L3: Loads // Extra ordinary loads (snag, bumping, extraordinal climate)
- L3: Loads // Hoisting Load
- L3: Loads // Hoisting load in different configurations
- L4: Loads // Hoisting weight + safe working load
- L3: Loads // Horizontal Inertia Loads
- L3: Loads // Horizontal skew loads
- L4: Loads // Horizontal skew loads
- L4: Loads // I have 2 wheels of my trolley, where to apply the loads
- L4: Loads // Inertia due to movements (trolley travel, crane travel, boom raising)
- L3: Loads // Load combinations
- L4: Loads // Load combinations
- L5: Loads // Load combinations
- L7: Loads // Side load
- L3: Loads // Slanting rope pull
- L3: Loads // Stairway loads
- L4: Loads // Trolley positions (where to apply the individual loads)
- L4: Loads // Which loads to apply
- L7: Loads // Wind
- L4: Loads // Wind directions
- L3: Loads // Wind load
- L4: Loads // Wind load
How to make a FEM model of your crane
- L7: FEMAP // Boom up calculations
- L7: FEMAP // Boom up in report
- L2: FEMAP // Building curves
- L3: FEMAP // Connecting Elements
- L3: FEMAP // Continue low eigenmodes because of rods
- L3: FEMAP // Copy element
- L3: FEMAP // Eigenmodes close to 0
- L3: FEMAP // Elements with zero length
- L3: FEMAP // How to change the shape of an element
- L3: FEMAP // How to make a mesh + define vector
- L3: FEMAP // Low eigenmodes because of rods
- L3: FEMAP // Model beam offset
- L2: FEMAP // Removing the mesh + meshing
- L5: FEMAP // Switch off element orientation
- L3: FEMAP // Using beam releases – element coordinate system
- L3: FEMAP // Vector of mesh control
How to set up all the calculations and to complete the documentation
- L1: SDC Verifier // 3 Reports: Report Results, Tables, Plots, Wizard and Designer
- L7: SDC Verifier // Add reaction forces
- L5: SDC Verifier // Add standards
- L1: SDC Verifier // Beam buckling lengths
- L1: SDC Verifier // Beam member length Y and length Z, Plate length and width, Weld classification, Customizable checks, Reporting
- L1: SDC Verifier // Conclusion: Euler buckling
- L1: SDC Verifier // Fatigue results comparison
- L1: SDC Verifier // General introduction
- L1: SDC Verifier // Individual Load, Load Set, Load Group (add safety factors, parts heavier than expected)
- L2: SDC Verifier // Linear Calculation core: Load combinations quick calculation method
- L7: SDC Verifier // Make a new view
- L7: SDC Verifier // Make a result report
- L7: SDC Verifier // Menu structure in (model setup / results) report
- L7: SDC Verifier // Model setup report
- L1: SDC Verifier // parametric crane built program
- L2: SDC Verifier // See maximum result: load group
- L1: SDC Verifier // Simple Stress Check + need for standard
- L1: SDC Verifier // Standards and checks
- L2: SDC Verifier // Store / manage views + deformation
- L3: SDC Verifier // Store views
- L1: SDC Verifier // Use embedded or stand alone version of the software
- L1: SDC Verifier // Weld finders
- L2: SDC Verifier // What use SDC Verifier for
- L1: SDC Verifier // Wind
Explanation on FEA results:
- L5: Results // Check buckling stress
- L5: Results // Check maximum stress per element at different POI
- L5: Results // Slenderness of beam
- L5: Results // Stiffness (eigenfrequencies)
Explanation with example crane:
- L7: Example // Add Element group / Classification group
- L7: Example // Add kappa value
- L7: Example // Add Load groups + safety factor
- L7: Example // Add plots in detailed report
- L7: Example // Add standards
- L7: Example // Add weld types
- L7: Example // Add white background to plot
- L7: Example // Allowable Stress Fatigue
- L2: Example // Apply loads to the crane (gravity, tip load, back load) + how to highlight node where force is applied
- L7: Example // ASD Static Stress Check
- L2: Example // Calculation
- L7: Example // Change from 2D to 3D
- L7: Example // Change legend in plot
- L7: Example // Change of names of individual loads
- L2: Example // Constraints bogies to the ground
- L7: Example // Continue load sets
- L7: Example // Cripple check
- L7: Example // Define category for each check
- L7: Example // Fatigue Check
- L7: Example // Fatigue Check create a plot
- L7: Example // Length factor
- L7: Example // Load factors
- L2: Example // Load group
- L2: Example // Load sets
- L7: Example // Load sets
- L2: Example // Make a job + individual loads
- L2: Example // Make a plot
- L7: Example // Matrix for load factors
- L2: Example // Matrix introduction
- L7: Example // New project
- L7: Example // Plot Criteria plot
- L7: Example // Plots for static stress check
- L7: Example // Remove boom up from plot
- L7: Example // Set material type
- L7: Example // Set the general views
- L7: Example // Static calculations (import all inidividual loads and constraints)
- L7: Example // Static Stress Check
- L7: Example // Static Stress Check boom up
- L7: Example // Store ‘Complete crane boom down view’
- L7: Example // Trolley ride load
- L7: Example // Warning: Tensile Strength is used in Calculations / Change material details
- L7: Example // What happens if you change material type
Questions and encountered problems from students:
- L7: Question // Can the order of individual loads be changed?
- L2: Question // Can we model this in another way, just show the shape
- L4: Question // Constraints are not working – constraintsets
- L4: Question // Constraints on bogie set
- L4: Question // Delete a beam release
- L2: Question // Difference crane width and support width + bay explanation
- L7: Question // Do we have to add the emergency brake?
- L5: Question // Do we have to apply the wind all combined or separately
- L7: Question // Do you have to operate with boom up?
- L7: Question // Don’t you use the buffer of the crane and the trolley together?
- L3: Question // Element with zero length
- L5: Question // Fatal error: illegal data on bulk data entering
- L3: Question // Fatal Error: singularities found (how can we find them – Modal analysis to find loose objects)
- L6: Question // Forces in SDC & Warping
- L4: Question // Forestay + bending moment
- L2: Question // HELP! Error nodes on same spot
- L2: Question // HELP! Error SINGULARITIES (coincident nodes and coincident elements)
- L3: Question // HELP! How do I get to quicksupport
- L3: Question // HELP! I have a double model
- L2: Question // HELP! My forces don’t show
- L3: Question // HELP! My model has strange deformations – displacements too large
- L2: Question // HELP! My model is gone / Active group
- L3: Question // HELP! Oke to skip the curves that do not have meshing attributes
- L3: Question // HELP! Split elements: No nodes to merge, still singularities -> need to split elements
- L2: Question // HELP! Strange displacement in my plot
- L2: Question // HELP! Where do I click on SDC – not responding
- L3: Question // HELP! Why does my new element not show
- L7: Question // How can I remove labels at results
- L2: Question // How can you make sure that the engine room does not influence the stiffness of the structure?
- L2: Question // How detailed should the crane be modelled?
- L3: Question // How do I change view: lines, text, numbers, colours, legenda on/off
- L5: Question // How to remove a beam release
- L6: Question // How to stiffen boom
- L3: Question // I cannot mesh because the orientation is colinear with the element orientation
- L5: Question // I have an element which does not move
- L6: Question // I have very small eigenfrequencies what to do / My constraints do not work
- L7: Question // I have very weird (maximum) displacements for group results
- L2: Question // I want to build a latice structure in my model
- L7: Question // If I have a slenderness ratio > 100 but a utilization factor <1 is that still fine?
- L2: Question // If the download wb3416_parametric_model.exe does not open use the already installed one
- L6: Question // Low eigenfrequencies 0.4 (not small!) how to increase
- L5: Question // Natural frequency is ok, but the model does not move
- L2: Question // SDC Verifier is different in the lecture slides than then current SDC verifier
- L3: Question // Solve error singularity: Check eigenfrequencies: if eigenfrequencies are 0 there is no stiffness
- L6: Question // What does an offset do?
- L4: Question // What forces to take into account when breaking
- L6: Question // What is a normal deflection of your boom tip
- L4: Question // What to do with the engine room
- L7: Question // When is a load not important and can you exclude it from your report
- L4: Question // Where to apply constraints
- L7: Question // Why do I need to lift my boom up?
- L7: Question // Why do I see only stresses in x direction and in all other directions 0?
- L7: Question // Why do we need reaction forces?
- L7: Question // Why do you apply the side load in 2 directions
- L7: Question // Why not use combination, buffer, side load and storm?
- L7: Question // Why use both side acceleration and side loads